Effects of vehicle speed and engine load on motor vehicle emissions.

نویسندگان

  • Andrew J Kean
  • Robert A Harley
  • Gary R Kendall
چکیده

Laboratory studies have provided a foundation of knowledge regarding vehicle emissions, but questions remain regarding the relationship between on-road vehicle emissions and changes in vehicle speed and engine load that occur as driving conditions change. Light-duty vehicle emissions of CO, NO x , and NMHC were quantified as functions of vehicle speed and engine load in a California highway tunnel for downhill and uphill traffic on a ∼4% grade. Emissions were measured throughout the day; average speed decreased inside the tunnel as traffic volume increased. Emissions of CO were typically 16-34 g L-1 (i.e., grams of CO emitted per liter of gasoline consumed) during downhill driving and ranged from 27 to 75 g L-1 during uphill driving. Downhill driving and moderate-speed uphill driving resulted in similar CO emission factors. The factor of 2 increase in CO emissions observed during higher-speed uphill driving is likely evidence of enriched engine fuel/ air ratios; this was unexpected because uphill driving observed in this study occurred at moderate engine loads within the range experienced during the city driving cycle of the U.S. emissions certification test. Emissions of NO x (as NO 2) were typically 1.1-3.3 g L-1 for downhill driving and varied between 3.8 and 5.3 g L-1 for uphill driving. Unlike observations for CO, all uphill driving conditions resulted in higher NO x emission factors as compared to downhill driving. NO x emissions increased with vehicle speed for uphill driving but not as strongly as CO emissions. Emissions of CO and NO x are functions of both vehicle speed and specific power; neither parameter alone captures all the relevant effects on emissions. In contrast to results for CO and NO x reported here and results for NMHC reported previously by Pierson et al.2256), emissions of NMHC per unit of fuel burned for downhill driving were over 3 times greater than NMHC emissions for uphill driving. Emission rates of CO and NO x varied more with driving conditions when expressed per unit distance traveled rather than per unit fuel burned while NMHC emission rates normalized to distance traveled were approximately constant for uphill versus downhill driving during peak traffic periods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Strategic Mild Hybrid Technology for Reducing Pollution and Optimization of Fuel Sources

Many studies have been done on hybrid vehicles in the past few years. The full hybrid vehicles need a large number of batteries creating up to 300 (V) to meet the required voltage of electric motor. The size and weight of the batteries cause some problems. This research investigates the mild hybrid vehicle. This vehicle includes a small electric motor and a high power internal combustion engine...

متن کامل

Multi-objective Optimization of Hybrid Electric Vehicle Equipped with Power-split Continuously Variable Transmission

This paper aims to find the efficient state of hybrid electric vehicle (HEV) by simultaneous optimization of the control strategy and the power train. The power transmission employed in this vehicle is a power-split continuously variable transmission (CVT) which uses several fixed ratio mechanisms. After describing this transmission, the rules of electric assist control strategy are introduced....

متن کامل

بررسی تاثیر کیفیت روغن موتور در میزان تراز صوتی ناشی از موتور اتومبیل

Introduction: Vehicle engine id one of the main sources of noise which its level is influenced by various parameters. The aim of this study was to investigate the impact of motor oils quality before and after oil change on the variability of vehicle engine induced noise level. In this study it is tried to follow-up the efficacy of motor oil quality on engines sound level. .Material and Method...

متن کامل

Functional Overview of Hydraulic Vehicle Engine Mount Classification

Car design incorporates many engineering sciences where today, have led to the use of advanced technologies in automobiles to provide more satisfaction and comfort for the passengers, increase the quality of vehicles, efficiency and more pleasure than previous cars. These issues can be categorized into two groups in general. In the first group, the effects and performance of components involved...

متن کامل

DEVELOPMENT OF A DC MOTOR ASSISTED HYDRAULIC BRAKING SYSTEM FOR AUTOMOTIVE USE

ABSTRACT: Deceleration or stopping the vehicle without any diving and lateral acceleration is essential to develop an effective braking system. The hydraulic braking system with intelligent braking called Antilock Braking system (ABS) and Electronic Stability Control (ESC) has been introduced.  However, due to the insufficient human effort, the ABS and ESC to some extent, not function well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 17  شماره 

صفحات  -

تاریخ انتشار 2003